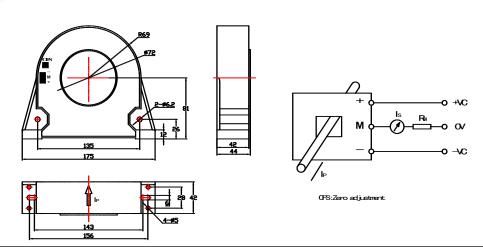


MCSM2000LTE Hall-effect Current Sensor Series


Closed loop current sensor based on the principle of Hall-effect. It can be used for measuring

	Туре	MCSM2000LTE	
I _{PN}	Primary nominal input current	2000	А
Ι _P	Measuring range of primary current	0∼±3000	А
I _{SN}	Secondary nominal output current	400±0.25%	mA
K _N	Conversion ratio	1:5000	
R _M	Measuring resistance (V _C =±15V)	V _C =±15V I _P =±2000 0~8	Ω
	(V _C =±15V)	V _C =±15V I _P =±2200 0~5	Ω
	(V _C =±18V)	V _C =±24V I _P =±2000 5~29	Ω
	(V _C =±18V)	V _C =±24V I _P =±3000 5~11	Ω
Vc	Supply voltage	±15~±24(±5%)	V
lc	Current consumption	V _C =±24V 28+Is	mA
V _D	Insulation voltage	AC/50Hz/1min 6	kV
εL	Linearity	<0.1	%FS
Х	Accuracy	T _A =25 °C <±0.7	%
l ₀	Zero offset current	T _A =25 °C <±0.25	mA
I _{OT}	Thermal drift of I ₀	$I_P = 0$ $T_A = -25 \sim +85 ^{\circ}\text{C}$ $< \pm 0.005$	mA
Tr	Response time	90%I _{PN} <1	us
di/dt	di/dt accurately followed	>100	A/μs
f	Frequency bandwidth(-1dB)	DC~100	kHz
T _A	Ambient operating temperature	-25~+85	$^{\circ}$ C
Ts	Ambient storage temperature	-40~+100	$^{\circ}$
Rs	Secondary coil resistance(T _A =25 °C)	25	Ω
	Standard	Q/320115QHKJ01-2010	

Dimensions of drawing (mm) Connection

Remarks

- ·Incorrect connection may lead to the damage of the sensor. I_{SN} is positive when the I_P flows in the direction of the arrow.
- Dynamic performance (di/dt and response time) are best with a primary bar in the center of the through-hole.