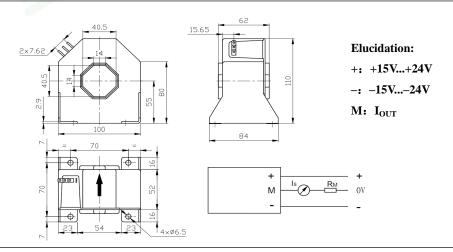


MCSM1000SH Hall-effect Current Sensor Series


Closed loop current sensor based on the principle of Hall-effect. It can be used for measuring

Electrica	al characteristics		
	Туре	MCSM1000SH	
I _{PN}	Primary nominal input current	1000	А
Ι _P	Measuring range of primary current	0~±2000	А
I _{SN}	Secondary nominal output current	200±0.5%	mA
K _N	Conversion ratio	1:5000	
R _M	Measuring resistance (V _C =±15V)	I _P =±1000 0~30	Ω
	(V _C =±15V)	I _P =±1200 0~20	Ω
	(V _C =±24V)	I _P =±1000 0~68	Ω
	(V _C =±24V)	I _P =±2000 0~15	Ω
Vc	Supply voltage	±15~±24(±5%)	V
lc	Current consumption	V _C =±24V 30+Is	mA
V_D	Insulation voltage	AC/50Hz/1min 6	kV
εL	Linearity	<±0.1	%FS
Х	Accuracy	T _A =25°C <±0.7	%
Ιο	Zero offset current	T _A =25°C <±0.4	mA
I _{OT}	Thermal drift of I ₀	I _P =0 T _A =-25~+85°C <±0.5	mA
T _R	Response time	<1	us
di/dt	di/dt accurately followed	>100	A/μs
f	Frequency bandwidth(-3dB)	DC~150	kHz
T _A	Ambient operating temperature	-25~+85	$^{\circ}$
Ts	Ambient storage temperature	-40~+100	$^{\circ}$
R _S	Secondary coil resistance(T _A =25 °C)	42	Ω
	Standard	Q/320115QHKJ01-2010	

Dimensions of drawing (mm)

Remarks

- ·Incorrect connection may lead to the damage of the sensor. I_{SN} is positive when the I_P flows in the direction of the arrow.
- Dynamic performance (di/dt and response time) are best with a primary bar in the center of the through-hole.