

MCSM1000LTC Hall-effect Current Sensor Series

Closed loop current sensor based on the principle of Hall-effect. It can be used for measuring

Electrical characteristics			
	Туре	MCSM1000LTC	
I _{PN}	Primary nominal input current	1000	А
I _P	Measuring range of primary current(DC)	0~±2000	А
I _{SN}	Secondary nominal output current	200	mA
K _N	Conversion ratio	1:5000	
R _M	Measuring resistance (V _c =±15V)	V _C =±15V I _P =±1000 0~30	Ω
	(V _C =±15V)	V _C =±15V I _P =±1200 0~20	Ω
	(V _C =±18V)	V _C =±24V I _P =±1000 0~75	Ω
	(V _C =±18V)	V _C =±24V I _P =±2000 0~15	Ω
Vc	Supply voltage	±15~±24(±5%)	V
lc	Current consumption	V _C =±24V 18+Is	mA
VD	Insulation voltage	AC/50Hz/1min 6	kV
εL	Linearity	<0.1	%FS
Х	Accuracy	T _A =25℃ <±0.7	%
lo	Zero offset current	T _A =25℃ <±0.25	mA
I _{OT}	Thermal drift of I_0	$I_{P} = 0$ $T_{A} = -25 \sim +85^{\circ}C < \pm 0.005$	mA / ℃
Tr	Response time	90%I _{PN} <1	us
di/dt	di/dt accurately followed	>100	A/µs
f	Frequency bandwidth(-1dB)	DC~100	kHz
T _A	Ambient operating temperature	-25~+85	°C
Ts	Ambient storage temperature	-40~+100	°C
Rs	Secondary coil resistance(T_A=25 $^\circ\!{\rm C}$)	37	Ω
	Standard	Q/320115QHKJ01-2010	
. .	Dimensions of developments		

Dimensions of drawing (mm)

Remarks

·Incorrect connection may lead to the damage of the sensor. I_{SN} is positive when the I_P flows in the direction of the arrow. ·Dynamic performance (di/dt and response time) are best with a primary bar in the center of the through-hole.